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Abstract. A sealing relation between remanent magnetization and excess energy of spin- 
glasses is tested numerically. Based on a simple domain picture of non-equilibrium states 
of spin-glasses a power law can be derived, which relates the excess energy to the remanent 
magnetization A E K  M x .  The exponent x is related to the interface exponent y,  which 
determines whether a spin-glass phase exists for T=O or not. Therefore equilibrium 
properties can be determined by measurement of non-equilibrium quantities. x is calculated 
numerically for different temperatures T and the spatial dimensions d = 2 and d = 3. The 
numencal resuits are consistent with the suggested scaling relation 

1. Introduction 

Slow decay to thermal equilibrium is one of the most characteristic properties of 
spin-glasses (Binder and Young 1986, Fischer and Hertz 1991). For example, in thermal 
equilibrium the magnetization of spin-glasses is zero since the magnetic moments point 
into random directions. However, after a magnetic field has been applied and then 
switched off, the spin-glass relaxes into a state with non-zero magnetization M, which 
slowly decays to zero (Tholence and Toumier 1975). Simultaneously the energy decays 
to its equilibrium value (Berton ef al 1984). 

A simple but very successful mathematical model for spin-glasses is the Ising model 
with random bonds (Edwards and Anderson 1975). In fact, numerical simulations 
show that this model exhibits remanence effects and a slow decay of energy and 
magnetization in great similarity to real experiments (Kinzel 1979). 

But even in simple spin-glass models the relaxational dynamics is not well under- 
stood. Even for the model with infinite range of couplings, there is no exact solution 
of the relaxation far from equilibrium, although a reliable theory of thermal equilibrium 

(Huse and Fisher 1991). 
Numerical simulations indicate that at non-zero temperatures this system relaxes 

to thermal equilibrium, therefore the energy barriers between metastable and equili- 
brium states are finite (Kinzel 1986). But in numerical simulations the finite size effects 
are so strong, that even systems up to lo9 couplings are not sufficient to precisely 
determine the value of the remanent magnetization for the infinite large system at zero 
temperature (Spitzner 1991, Kohring and Schreckenberg 1991). 
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t See, however, a recent approach by Horner er a1 1991. 
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Some insight into the non-equilibrium dynamics of spin-glasses has been obtained 
by either exact solutions of phenomenological models (Schreckenberg 1985, Ogielski 
and Stein 1985) or by scaling relations derived from assumptions on the structure of 
spin-glass states (Fisher and Huse 1988, Kinzel 1988, Koper and Hilhorst 1988). Both 
approaches are discussed in Fisher and Hertz (1991). 

This paper presents a numerical test of the scaling relation between remanent 
magnetization and excess energy which was derived by one of us (Kinzel 1988). This 
scz!i~g r e ! ~ t h  is bcsed 0.1 I very simp!e P.ISP!Z 0.1 the strttc!dre efthe spiz=g!ass 3:":' 
far from equilibrium. As a consequence a relation between excess energy and remanent 
magnetization is obtained. This scaling relation is checked by numerical simulations. 
In section 2 the scaling law is explained. The numerical method will be introduced in 
section 3 and the results are presented in section 4. Finally the results are summarized 
and discussed. 

2. Domain structure of spin glass states 

In ferromagnets a state which bas been quenched from the paramagnetic to the 
ferromagnetic phase can be described by domains, which are separately in equilibrium. 

picture is used for random field problems (Imry and Ma 1975) and is definitely useful 
to describe one-dimensional spin-glasses at low temperatures (Chen and Ma 1982). 

In higher dimensional spin-glasses the structure of non-equilibrium states may be 
much more complicated. For instance one can imagine a hierarchy of domains inside 
of domains (Villain 1986), or there may exist a much more ramified structure for which 
domains are no useful description at all. 

In this paper we try to derive consequences of a very simple domain picture, and 
we check them by Monte Carlo simulations. We assume that after a fast transient 
relaxation a metastable spin-glass state consists of domains of equilibrium states (see 
figure 1). This picture should hold at low temperatures, even if there is no spin-glass 
phase, as long as the thermal correlation length is larger than the typical linear size I 
of the domains. 

I increases with time by diffusion and annihilation of the domain walls. Not much 
is known about the time dependence of 1. Here we do not want to discuss this difficult 

?ley go!? !vi!!! time n!ving to di!min,o a.(! m?i!!i!l?ing domai. pla!!s. n e  same 

Figure 1. Domain structure ora non-equilibrium spin-glass state. We expect that inside of 
each domain one of the possible equilibrium configurations is found. 
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dynamical problem, but rather use the domain picture to derive a relation between 
remanent magnetization and excess energy. 

The energy of such a non-equilibrium state is given by the sum of equilibrium 
energy (inside of the domains) and the interface energy of the domain walls (as long 
as no external magnetic field is applied). Hence, if the system has a linear extension 
Land if d is the spatial dimension one has Ld spins and interfaces. With each 
interface having an energy proportional to l y ,  the excess energy per spin can be estimated 
as 

In king ferromagnets one has y = d - 1 i.e. the wall energy is proportional to its surface. 
In spin-glasses, however, the interface can adjust to the random bonds. The larger the 
interface, the higher is the probabiiity to find a surface cutting weak bonds. Hence the 
wall energy increases with its linear extension I weaker than for usual magnets. The 
power law PE a I y  with an exponent y < d - 1 has been verified numerically( Bray 
and Moore 1984, McMillan 1984). Furthermore, scaling arguments at zero temperature 
show that for y<O there is no spin-glass phase. In this case the interface energy 
decreases with the system size and the infinite system is insensitive to its boundaries. 

Now we want to estimate the magnetization per spin M from the typical domain 
size I .  Since each domain is in an equilibrium state, its magnetic moments point into 
random directions. Note that the spins are correlated to their interactions, but for 
random couplings there is no preferred direction or correlation between the spins. 
Hence the typical magnetic moment of a domain is proportional to Idp2 which is the 
squareroot of the number of spins. 

If in the initial state the spins are ferromagnetically aligned, we expect that after 
relaxation at least a large fraction of domain moments point into the initial direction. 
Therefore the total magnetization per spin is estimated as 

Equations (1) and (2) are combined to a relation between energy and magnetization. 
One obtains 

(3) 
2Y 
d 

AEEM" withx=2--. 

Note that this relation does not contain the unknown dynamics of l ( i ) .  The exponent 
x can be determined by the exponent y of the interface energy which has been estimated 
numencaiiy (Bray and Moore i984j. 

The scaling law (3) is a relation between two non-equilibrium quantities. However, 
from the exponent x one obtains equilibrium properties: namely the value of x gives 
the interface exponent and only for x < 2 the system has a spin-glass phase in thermal 
equilibrium. Hence the scaling law (3) gives an experimental access to equilibrium 
properties without obtaining thermal equilibrium. 

3. Monte Carlo simulations 

We have studied the two- and three-dimensional king spin glass by Monte Carlo 
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simulations (Binder and Young 1986). The Hamiltonian is given by 

H Eissfeller and W Kinzel 

The spins are described by king variables Sic (+l ,  -l),  and only nearest neighbours 
on a square and cubic lattice, respectively, are connected by random couplings J+. We 
use a Gaussian distribution with zero mean and variance J = 1 for the distribution of 
bonds Jv. For the Monte Carlo algorithm we used the 'Kalos-method' which produces 
a spin-flip for each computational step (Bortz ef a1 1975, Binder 1979). In figure 2 we 
compare the efficiency of this algorithm with the one of the standard Metropolis 
method. Hence, for the three-dimensional spin-glass at half the transition temperature 
(T= TJ2 with Tc=(O.9*0.1)J (Bhatt and Young 1988)), we find that the Kalos 
method is four times faster (this factor depends on system size, implementation, 
computer,. . .). 
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Figure 2. Comparison of algorithm efficiency for the three-dimensional Edwards-Anderson 
model. The ratio of spin-flip rates, respectively its reciprocal is plotted versus temperature. 
The vertical line marks the value, where both algorithms have equal efficiency. The 
simulation was performed for N = IO' spins, N, = 10 sets of couplings and t = 3000 MCS. 

We used systems up to N = 123 spins with helical boundary conditions and averaged 
the results over up to 24 000 different sets of couplings. The initial state was chosen 
to be fully aligned S,(O) = +l .  Then the system was simulated at a constant temperature 
T and the magnetization M ( f )  and energy E ( [ )  per spin were recorded. The time t 
was measured in Monte Carlo steps per spin (MCS) for the Metropolis algorithm (the 
Kalos method calculates f from its distribution). 

Since we wanted to check the scaling law (3) we first recorded the energy E as a 
function of M directly. In this case, due to large fluctuations, the energies E ( [ )  recorded 
for a fixed value of M belong to different times I ,  for different runs. 

It turned out that this sampling method does not work at all. Figure 2 shows the 
distribution of E and M values. It is a broad cloud which moves only slightly with 
the time interval of recording. Correspondingly we found a strong dependence of 
the averaged E ( M )  values on the system size N and on the length of the recording 
interval 1. 

If the energy E ( t )  and magnetization M ( t )  are averaged for fixed time f the finite 
size effects are strongly reduced. Figure 4 shows that both functions can be fitted to a 
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Figure 3. Probability distribution in the energy-magnetization plane. obtained for different 
times and different samples. Shown are contours of constant probability density. The data 
are collected from different time intervals (in MCS: ((I) O<ls 1000; ( b )  1000< t42000; 
( e )  2000<t~3000.  

power law (Kinzel 1979). The corresponding fits for d = 2, which are not shown here 
are of the same equality. 

E (  1 )  = E,+ B t P  M ( t ) =  M,+At-". ( 5 )  

In principle the equilibrium energy E, could have been determined by simulated 
annealing, but here we used it as a fit parameter. For the infinite system the equilibrium 
magnetization M ,  is zero, but in finite systems we expect a value of order l/m. 

Figure 5 shows the exponents a and b obtained from fitting the average energy 
E ( t )  and magnetization M ( t )  to the power laws decay ( 5 ) .  The temperature T is 
rescaled by in order to compare the results for different dimensions d, i.e. we define 

T,= T / ( J J ; i ) .  ( 6 )  

We find that the exponents increase with tempeature and that the energy decays faster 
than the magnetization. Both of the exponents are very small, hence the decay is very 
slow. 
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Figure 4. The relaxation of remanent magnetization and excess energy are shown in double 
logarithmic plots for different values of the reciprocal temperature p and spatial dimension 
d = 3 .  

4. Scaling exponent 

If the power law decay ( 5 )  is correct in the thermodynamic limit the energy is a power 
of the magnetization, as predicted in (3). The exponent x is given by 

x = b f a .  (7) 

Hence figure 6 showing x as a function of T, is the main result of this paper. The 
statistical errors of both a and b are small, but since their absolute values are also 
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small the statistical error of x is not negligible. Furthermore there are some finite size 
effects as shown in figure 7. The exponent x obviously decreases with increasing system 
size. However, the data does not allow a precise extrapolation to the thermodynamic 
limit. 

According to (3) the exponent x is determined by the interface exponent y. For 
zero temperature, y has been estimated from exact numerical calculations for very 
small system sizes (Bray and Moore 1984). Using these values of y we obtain x = 1.9 
(d = 3) and x = 2.3 (d  = 2). respectively. Our results for the lowest considered tem- 
perature are somewhat larger than these values. 
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Figure 6. The values and error bars of the exponent x are plotted versus the scaled 
temperature. d gives the spatial dimension of the model. 

X 

Figure 7. System size dependence of the scaling exponent x 

Fisher and Huse (1986) suggested that at high temperatures the clusters should 
have a fractal surface with dimensionality d,. Since the entropy determines the location 
of the surface, the interface energy scales like a random collection of positive and 
negative bonds, this would give y = dJ2. In two dimensions d,  is estimated as d ,  = 1.26 
(Bray and Moore 1987) which gives x = 1.37. In fact our results of figure 6 do not rule 
out this possibility, because the data does not allow a reliable extrapolation to high 
temperatures. 
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5. Summary and discussion 

A simple domain structure is suggested for the spin-glass states far from equilibrium. 
As a consequence the excess energy depends on the remanent magnetization by a 
power law with an exponent x, which is related to the scaling exponent y of the 
interface energy. 

If this scaling relation is true, it allows the determination of equilibrium properties 
from measurements of relaxation far from equilibrium. In particular the system has a 
phase transition only if the exponent x at zero temperature is smaller than 2. 

This scaling relation is tested by numerical simulations of the Edwards-Anderson- 
model. The energy and magnetization are recorded as functions of time. Each of them 
can be fitted by a power law decay. As a consequence the energy is a power of the 
magnetization and the exponent x is calculated as a function of the temperature. 

However, a reliable estimate of the value of x was difficult for the following reasons: 
Due to the extremely slow decay of energy and magnetization, the statistical 

error of x is large. 
*There may be a systematic error, since we assume a power law decay. A direct 

evaluation of energy versus magnetization turned out to be impossible because of 
strong finite size and finite time effects. 

There is still some dependence of x on the system size. Due to large statistical 
errors we could not extrapolate x to the thermodynamic limit. 
Nevertheless our results show the following behaviour: 

The three-dimensional exponents x (  T,) are lower than the two-dimensional ones. 
x ( T J  is decreasing with increasing temperature T,. 
At low temperature x is larger than 2 for two dimensions while x is close to the 

value 2 for three dimensions. 
At low temperature x is consistent with values determined from the interface 

exponent y at zero temperature. Note that x decreases with the system size N. 
Hence, we believe that the numerical results support our scaling theory of the 

spin-glass states far from thermal equilibrium. Our findings are consistent with the 
scaling relation, but of course do not uniquely prove it. 

There are also experiments on spin glass materials, where both, the decay of energy 
and magnetization, are recorded simultaneously and fitted to a power law decay (Berton 
et al 1984). Applying our scaling relation (3) their data gives x=1.0 for AuFe 6%, 
x = 1.7 for CuMn 5% and x = 2.3 for Eu,.,Gd,,S, respectively. Note that all experiments 
are performed at finite temperatures T # 0. This implies that both the metallic materials 
AuFe and CuMn do have a spin-glass phase, in contrast to the insulator Eu0.5Gd0.SS. 
But more experimental data is needed to check the scaling theory on real systems. 
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